Учреждение образования «БЕЛОРУССКАЯ ГОСУДАРСТВЕННАЯ СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ»

Кафедра химии

RNMNX

Лабораторный практикум

Лабораторная работа

Определение порога коагуляции

Лабораторная работа Определение порога коагуляции

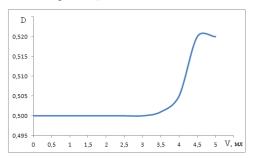
Цель работы: изучить оптические и визуальные методы определения порога коагуляции, а также явление взаимной коагуляции противоположно заряженных золей.

Оборудование: штатив с пробирками; 4 конические колбы, 100 см³; пипетки, 10 см³; бюретки; фотоэлектроколориметр.

Реактивы: золь гидроксида железа (III); золь берлинской лазури; сульфат калия, 0,0005 М; хлорид калия, 2 н; сульфат калия, 0,01 н; гексацианоферрат (III) калия $K_3[Fe(CN)_6]$, 0,001н; хлорид кальция, 5%.

1. Взаимная коагуляция золей. Готовят одиннадцать пронумерованных пробирок. В каждую наливают золь гидроксида железа (III), частицы которого заряжены положительно, согласно таблице 14. В качестве золя с отрицательно заряженными частицами используют золь берлинской лазури. После смешивания золей растворы в пробирках тщательно перемешивают и оставляют на 30 минут. Через 30 минут после сливания растворов в таблице отмечают коагуляцию (полная «+++», частичная «++» или «+») и цвет жидкости над осадком. Пробирки 10 и 11 контрольные.

Таблица


	Номер пробирки										
	1	2	3	4	5	6	7	8	9	10	11
Золь Fe(OH) ₃ , см ³	9	8	7	6	5	4	3	2	1	0	10
Золь K ₃ [Fe(CN) ₆], см ³	1	2	3	4	5	6	7	8	9	10	0
Степень коагуляции											
Окраска жидкости											
над осадком											

2. Оптический метод определения порога коагуляции. Согласно таблице, в пробирки наливают золь гидроксида железа, затем дистиллированную воду. Перемешивают. Сульфат калия в пробирки добавляют поочерёдно, раствор перемешивают и сразу выливают в кювету для измерения оптической плотности. Интервал времени между прибавлениями электролита к золю и измерениями должен быть равен одной минуте. Измерения оптической плотности проводят при длине волны 490 нм

Таблица

	Номер пробирки										
	1	2	3	4	5	6	7	8	9	10	11
Золь Fe(OH) ₃ , см ³	10	10	10	10	10	10	10	10	10	10	10
H_2O , cm ³	5,0	4,5	4,0	3,5	3,0	2,5	2,0	1,5	1,0	0,5	-
$0,0005 \text{ M K}_2\text{SO}_4, \text{ cm}^3$	-	0,5	1,0	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,0
D											

По полученным значениям оптической плотности строят график в координатах D=f(Vэлектролита).

Определить порог коагуляции, пользуясь подобного рода кривой, очень трудно, так как кривая не имеет чётко выраженного перегиба, по которому можно найти объём электролита, соответствующий порогу коагуляции. Поэтому удобнее построить график в координатах dD/dV = f(V) электролита), максимум которого будет соответствовать V_x .

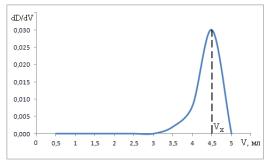


Рис. – График для нахождения объёма электролита V_x , соответствующего порогу коагуляции Расчёт порога коагуляции проводят по формуле:

$$\gamma = (C \cdot V_x \cdot 1000)/15$$
, где

γ − порог коагуляции золя, ммоль/л;

С – концентрация электролита, моль/л;

 V_x – объём электролита, соответствующий порогу коагуляции (находят графически), мл;

15 – общий объём исследуемой системы в пробирке.

3. Визуальный метод определения порога коагуляции

В 3 колбы для титрования наливают по 5 см^3 золя гидроксида железа (III). В 4 колбу наливают 5 см^3 золя гидроксида железа (III) и 5 см^3 дистиллированной воды — эта колба будет служить контролем при титровании

Оттитровать поочередно золь растворами электролита, указанными в таблице до появления помутнения. Результаты внести в таблицу Вычислить объём электролита V_2 в пересчёте на 0,001 н раствор.

Таблица

Электролиты	V_1 , cm ³	V_2 , cm ³	γ, ммоль/л	lg V ₂
2 н KCl				
0,01н K ₂ SO ₄				
0,001н K ₃ [Fe(CN) ₆]				

Рассчитать порог коагуляции по формуле:

$$\gamma = \frac{(C \cdot V_1 \cdot 1000)}{V_1 + V_{\text{BOLTR}}}$$

γ − порог коагуляции золя, ммоль/л;

С – концентрация электролита, моль-экв/л;

 V_1- объём электролита, пошедший на коагуляцию, см 3 ;

 $V_{\text{золя}}$ – объём золя, взятый для титрования, см 3 .

Построить график зависимости $\lg V_2$ от заряда коагулирующего иона и график зависимости порога коагуляции γ от заряда коагулирующего иона.

4. Влияние температуры на коагуляцию (створаживание) коровьего молока под действием хлористого кальция

В 5 пробирок наливают по $10~{\rm cm}^3$ молока и помещают в термостат, где доводят до температуры $50^{\rm o}$ C. Не вынимая штатив с пробирками из термостата, в одну из них добавляют $1~{\rm cm}^3$ 5%-ного раствора хлорида кальция. Если при этом произойдет коагуляция, то в оставшиеся пробирки приливают меньшие количества хлорида кальция ($0.8~{\rm cm}^3$; $0.6~{\rm cm}^3$ и т.д.). Если же в первой пробирке коагуляция не произойдет, то в следующие порции добавляют большие количества ($1.2~{\rm cm}^3$; $1.4~{\rm cm}^3$ и т.д.). Опыт повторить при температуре $70~{\rm u}~90^{\rm o}$ C.

Отметить минимальный объем хлорида кальция, соответствующий помутнению при каждой температуре. Рассчитывают по полученным данным порог коагуляции (γ) молока при различных температурах.

$$\gamma = (C \cdot V_1 \cdot 1000) / V_{30JJR}$$

Сделать вывод о влиянии температуры на порог коагуляции. Какой ион соли $CaCl_2$ будет коагулирующим для молока? Почему меняется количество $CaCl_2$, необходимое для коагуляции молока, при изменении температуры?

ЛИТЕРАТУРА

Основная

- 1. Ахметов, Н. С. Общая и неорганическая химия: Учебник для вузов/ Н. С. Ахметов. М.: Высш. шк., 2006. 743.
- 2. Барковский, Е. В. Аналитическая химия: Учеб.пособие/ Е. В. Барковский. Мн.: Высш. шк., 2004. 351 с.
- 3. Барковский, Е. В. Введение в химию биогенных элементов и химический анализ: Учеб.пос./ Е. В. Барковский, С. В. Ткачев и др. М.: Высш. шк., 1997. –126 с.
- 4. Гольбрайх, 3. Е. Сборник задач и упражнений по химии: Учеб. пособие/ 3. Е Гольбрайх.—М.:ООО«Издательство Астрель», 2004.—383с
- 5. Ким, А.М. Органическая химия: Учеб.пособие/ А. М. Ким. 3-е изд., испр. и доп. Новосибирск: Сиб. унив, изд-во, 2002. 971 с.
- 6. Князев Д. А. Неорганическая химия: Учебник для вузов/ Д. А. Князев, С. Н. Смарыгин. М.: Высш. шк., 1990. 430 с.
- 7. Руководство к изучению курса "Общая и неорганическая химия": Пособие для студентов нехимических специальностей / И. Е. Шиманович [и др.]; под ред. И.Е. Шимановича. 3-е изд. Минск: РИВШ, 2008. 112 с.
- 8. Угай Я. А. Общая и неорганическая химия: Учебник для вузов/ Я. А. Угай. 4-е изд. М.: Высш. шк., 2004. 440 с.
- 9. XИМИЯ. Неорганическая химия:Учебно-методический комплекс: О. В. Поддубная, И.В. Ковалева. Горки: БГСХА, 2010. 169 с.
- 10. Цитович, Н. К. Курс аналитической химии: Учебник для вузов/ Н. К. Цитович. М.: Высш. шк., 1987. 403 с.
- 11. Цыганов, А. Р. Сборник задач и упражнений по химии: Учеб.пособие / А. Р. Цыганов, О. В. Поддубная. Минск: ИВЦ Минфина, 2013. 236 с.

Дополнительная:

- 1. Алешин, В.А. Практикум по неорганической химии/ В.А. Алешин[и др.] –М.: Издат. Центр"академия", 2004. 384 с.
- 2. Волков А.И.Метод молекулярных орбиталей: Учеб.пособие / А.И. Волков. Минск : Новое знание, 2006. 133 с.
- 3. Введение в лабораторный практикум по неорганической химии: Учеб.пособие / В.В. Свиридов, Г.А.Попкович и др. Мн : Выш. шк., 2003. 96 с.
- 4. Дорохова, Е. Н. Аналитическая химия. Физико-химические методы анализа: Учебник для почвенно-агрохимических специальностей / Е. Н. Дорохова, Г. В. Прохорова. М.: Высш. шк., 1991. 354 с.
- 5. Жарский, И. М.Теоретические основы химии: сборник задач: Учеб.пособие. Минск.: Аверсев, 2004. 397 с.
- 6. Зайцев, О. С. Исследовательский практикум по общей химия: Учеб.пособие. / О. С. Зайцев. М.: Изд-во МГУ, 1994. 480 с.
- 7. Общая химия. Биофизическая химия. Химия биогенных элементов: Учебник для вузов/ Ю.А. Ершов, В.А. Попков и др. 6-е изд., стер. М.: Высш. шк., 2007. 560с.
- 8. Практикум по общей и биоорганической химии: Учеб. пособие для студ. высш. учеб. заведений / под ред. В. А. Попкова. 3-е изд. М.: Изд. центр «Академия», 2008. 240 с.
- 9. Слесарев, В. И. Химия: основы химии живого: Учебник для вузов / В. И. Слесарев. СПб: Химизлат. 2001. 784 с.
- 10. Степин, Б. Д. Неорганическая химия: Учебник для вузов/ Б. Д. Степин, А.А. Цветков. М.: Высш. шк., 1994. 608 с.

Составители Поддубная Ольга Владимировна Ковалева Ирина Владимировна Мохова Елена Владимировна